
plasma sensors chapter 12 August 3, 1997

Gaussian Statistics

Contents

VOLUME SAMPLING DIAGNOSTICS

FINITE SAMPLE VOLUME EFFECTS

TWO FEATURES

LINE INTEGRALS, COMMON MODE, PATH EFFECTS

APPLICATION OF GAUSSIAN STATISTICS TO LINE INTEGRAL EFFECTS

p 12.1



plasma sensors chapter 12 August 3, 1997

VOLUME SAMPLING DIAGNOSTICS

The Langmuir probe

Restrictions: sample vol. size effects, no. of sample vols.
Collects fluctuations over 2(rp+ ρi), only two sample points

field l ine

particle orbit
radius 

probe radius rp

ρi

probe tip
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Beam Emission Spectroscopy

Restrictions: sample vol. size, path effects.
Collects over ≈ 2 x 2 cm., beam through fluctuating medium.

BE
AM

Fibre

lens

Measure light intensity fluctuations emitted 
from a neutral beam excited by collisions 
with plasma ions and electrons.  

emission from 
intersecting volumes
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The Heavy Ion Beam probe

Restrictions: sample vol. size, no of sample vols., path effects.

analyzer

accelerator

secondary beam

Z

R, Y

primary beam

X

sample volume

φ
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FINITE SAMPLE VOLUME EFFECTS

y2

a

b

y1

y

x1 x2

arctan α

δy

xδ

radial

y2

y1

x1 x2radial

δ y

2b

2a

x

y

poloidal

(dx,dy) correspond to (dr,rdθ) in the cylindrical geometry.
Centers separated by (δx,δy) = (δr,rδθ).  Either fixed hard
edges of length 2a and 2b, or Gaussian profiles with e-folding
widths a and b, and orientation angle α=(rdθ/dr)-1.  Mostly
consider α = 0, δx = 0, i.e. we are measuring poloidal
components of wave numbers.
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For the “hard edge” case, the sample vol. average is given by

˜ n e x j , y j( ) =
1
A

dy
y j −b

y j +b

∫ dx˜ n e x, y( )
x j −a+α (y−y j )

x j +a+α (y−y j )

∫

with the area A = 4ab.  For the Gaussian profiled sample
volumes, the sample volume average is given by

˜ n e x j , y j( ) =
1
A

dy
−∞

∞
∫ dxe

−
x− x j −α y −y j( )( )2

a2 −
y −y j( )2

b2

  

  

  
  
  

  

  

  
  
  
˜ n e x, y( )

−∞

∞
∫

where the area A is

A = dy
−∞

∞
∫ dxe

−
x− x j −α y −y j( )( )2

a2 −
y−y j( )2

b2

  

  

  
  
  

  

  

  
  
  

−∞

∞
∫ = πab

Take a simple 1D case of a wave ˜ n e = ˜ n e0Cos kyy( ).  Then the

volume averaged measurement is, for the hard edged case

˜ n e =
1

2b
dy˜ n e0

−b

b

∫ Cos kyy( ) = ˜ n e0

Sin kyy( )
kyy

and in the Gaussian case

˜ n e =
1
πb

dye
− y

b
 
 

 
 

2

˜ n e0
−∞

∞
∫ Cos kyy( ) = ˜ n e0e

−
bk

y

2
 
 

 
 

2
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The normalized results ( ˜ n e /˜ n e0) are shown below as a function
of kyb: we see the filtering action of each sample volume is
similar for small kyb, but for large kyb the “hard edge” case
introduces zeros where kyb = nπ, i.e. when an exact number of
wavelengths fits into the sample volume (remember the length
is 2b).  Clearly we should use kyb < 1 to avoid errors.

ne

ne0

~

~

Gaussian

hard edged

k  by
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Next we want to consider what happens with turbulence
present.  We will consider only the Gaussian sample volumes,
so that the average of a Fourier component is given by

˜ n kω = dx
−∞

∞
∫ ˜ ˆ n ω x( )ei kx x +ky y( )

= ˜ ˆ n ω
πab

dy
−∞

∞
∫ dxe

−
x −x j −α y−y j( )( )2

a2 −
y− yj( )2

b2

  

  

  
  
  

  

  

  
  
  
e

i kx x+ky y( )
−∞

∞
∫

= ˜ ˆ n ωe

− kx a
2

  
    

  
    

2

−
ky +αkx( )2

b

2

  

  

  
    

  

  

  
    

2

+ikx x j + iky yj

  

  

  
  
  

  

  

  
  
  

The power spectrum S(k,ω) is defined by

S k,ω( ) = lim
T→∞

1
T

˜ n e k,ω( ) 2

so that the effective sample volume averaged spectrum is

S k,ω( ) = lim
T→∞

1
T

˜ n k,ω( ) 2

= S k,ω( )e
−2

k
x
a

2
 
 

 
 

2

−2
k

y
+αk

x( )2

b

2

 

 
 

 

 
 

2 

 
 

 

 
 
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Assuming each sample volume has the same size and shape
we obtain the cross power spectrum of the sample volume
averages

P ω r1, r2( ) = lim
T→∞

1
T

˜ n ω
* r1( ) ˜ n ω r2( )

=
dkx

2π−∞

∞
∫

dky

2π
S k,ω( )

−∞

∞
∫ eik•δr

= S ω γ ω r1, r2( )eiφ ω r1 ,r2( )

The last form of the expression is a standard form, in which

 S ω = P ω r1,r1( ) P ω r2 ,r2( )[ ]
1

2

is the mean of the cross power spectrum, ˜ γ  and φ  are the
coherence and phase.

Now we have to assume a form for S(k,ω): take a Gaussian

S k,ω( ) = πlrlθS ω( )e
−

l
r

2

4
k

r
−k 

r
( ) 2

−
lθ

2

4
kθ −k θ( ) 2 

 
 
 

Here the correlation lengths lr and lθ are defined to be one e-
folding distance of the intrinsic coherence γ:

γ ω = e
− δr

lr

 
 
  

 

2

+ rδθ
lθ

 
 
  

 
 

2 

 
 

 

 
 

The half widths (standard deviations) of the wave number
spectrum are given by

σkr = 2
lr

 and σkθ = 2
lθ
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With these forms we obtain an expression for P ω r1, r2( ) :

P ω r1, r2( ) = lxly
dkx

2π−∞

∞

∫
dky

2π−∞

∞

∫

e
ik

x
δx+ik

y
δy−2

k
x
a

2
 
 

 
 

2

−2
k

y
+αk

x( )b
2

 

 
  

 
 

2

−
l

x

2

4
k

x
−k 

x( )2

−
l

y

2

4
k

y
−k 

y( )2
 

 
 

 

 
 

This can be written in the usual form if

S ω( )
S ω( )

=
1
h

exp −
k y + αk x( )2

b2 + a2 k x
2 1+

2b2

ly
2

 

 
  

 

 
  + k y

2 2b2

lx
2

 

 
 
 

 

 
 
 

2h

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

γ ω = exp −

δx

lx

 

 
 

 

 
 

2

+ 1+
2a2

lx
2

 

 
 

 

 
 

δy

ly

 

 
  

 

 
  

2

+
2b2 δx − αδy( )2

lx
2ly

2

h

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

φ ω =
k xδx + k yδy +

2b2

ly
2 k x −

2αb2

lx
2 k y

 

 
  

 

 
  δx − αδy( ) +

2a2

lx
2 k yδy

h

where 

h = 1+
2b2

ly
2 +

2 α2b2 + a2( )
lx
2 +

4a2b2

lx
2ly

2

p 12.10



plasma sensors chapter 12 August 3, 1997

We consider some examples, taking α = 0, δx = 0, (sample
volumes aligned in the poloidal direction), with a = b (equal
lengths).  For the turbulence we take lx = ly = 1 cm, kx = 0.
Figure shows the fraction of the power (S ω( ) / S ω( ) which we
measure as the size of the sample volume is increased: We
must use b << a correlation length to obtain correct results.

S
_

S

b (cm)a=

correct value
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Next consider two sample volumes separated by 2 cm, and plot
the observed phase as a function of sample volume size.  We
would deduce a  wave vector

k y =
φ 
δy

so that for b = 0 (no sample volume size effects) we expect
φ = kyδy = 2 cm.  When a = b = lc, the error is about 60%.

Therefore we should arrange a, b << lc to obtain accurate
wave vectors

Note the ratio of the separation of the sample volumes to the
sample volume size δy / b is not important.

b (cm)

φ
_

correct 
value

a =
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Lastly we look at the coherence γ  as a function of sample
volume size, b.  In the example considered the sample volumes
are separated by more than a correlation length (ly = 1 cm, δy
= 2 cm) so that the initial correlation is very low.  As the
sample volumes increase and overlap, so the correlation
increases.  With a = b = lc, the error in γ is about x 10! (but an
error in the computed correlation length of about 50%)

γ
_

b (cm)a =
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TWO FEATURES

All this is for one feature.  To extend to two, we imagine the
case where the individual features are uncorrelated, so that

P ωΣ r1, r2( ) = lim
T→∞

1
T

˜ n eω1 r1( ) + ˜ n eω 2 r1( )( ) ˜ n eω1 r2( )+ ˜ n eω 2 r2( )( )

= lim
T→∞

1
T

˜ n eω1 r1( ) ˜ n eω1 r2( )( ) + ˜ n eω2 r1( ) + ˜ n eω2 r2( )( )
= P ω1 r1, r2( ) + P ω2 r1,r2( )
= S ω1γ ω1 r1,r2( )e iφ ω1 r1,r2( ) + S ω2 γ ω 2 r1, r2( )eiφ ω 2 r1,r2( )

We want to write this in the form

P ωΣ r1, r2( ) = S ωΣγ ωΣ r1,r2( )e iφ ωΣ r1 ,r2( )

which is arranged if

SωΣ = Sω1 + Sω 2

φωΣ =
Sω1γ ω1Sin φω1( ) + Sω2γ ω 2Sin φω 2( )
Sω1γω1Cos φω1( ) + Sω2γ ω 2Cos φω 2( )

γ ωΣ =
Sω1γ ω1( )2 + Sω2γ ω 2( )2 + 2Sω1Sω 2γ ω1γ ω2Cos φω1 − φω 2( )

Sω1 + Sω 2( )2

 

 
  

 

 
  

1

2
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Consider the implications for some particular situations.  We
consider two “features”: 1 is a long wavelength low k feature,
and 2 is a more “drift wave” like feature.  For our sample
volumes we take perfect poloidal alignment (α = 0, δx = 0),
and worry only about poloidal effects (i.e. set a = 0).

TURBULENCE
Feature 1 Feature 2

t y p e long wavelength dr i f t  wave
ky (cm-1) 0.3 3
kx (cm-1) 0.3 3
ly (cm) 1/0.3 1/3
lx (cm) 1/0.3 1/3
S(ω) 1 1
2σk/k= 2√2 2√2

SAMPLE VOLUMES
α 0
a 0
b variable
δx 0
δy 1.5 cm
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ω

k (cm  )-1

-1(rad s  )

drift 
wave

long wavelength
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Power

The long wavelength is easily observed with large sample
volumes, but the power in the drift wave like feature
is only seen as b is decreased (because of the short
wavelength)

1

2

Total

b

S

S

_

(cm)

(drift wave)

(long wavelength)

A typical HIBP b = 0.5 cm. implies only 0.6 to 0.7 of the total
power is measured.
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Phase, wave vector

Only the long wavelength component is picked up.
This is because the short wavelength drift wave has such a
short correlation length (0.33 cm) that the chosen separation
(1.5 cm) is too large for it to be seen.  Note the exact phases (b
= 0) should be 0.5 (long wavelength) and 4.5 (drift wave)

φ

b (cm)

2 (drift wave)
1 (long wavelength)
and total
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Coherence, correlation length

γ

b (cm)

total

1 (long wavelength)

2 (drift wave)

Even for a small sample volume, only an “average” is seen.

What happens with increasing sample volume size is a mess.

p 12.19
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Consider poloidal separation ⇒ 0 (actually δy = 0.002 cm).
This will not affect the measured power.

If only a single feature was present, then while the measured
phase is affected by the choice of separation, the deduced wave
number k is not (but k i s  affected by the choice of sample
volume size b).

In the presence of two features the measured phase is affected
by the choice of separation, because of coherence differences.
The individual phases would be accurately measured at small
b, but the measured phase lies between the two individual
phases.  That is, the diagnostic would measure an effective k
between those actually present.

φ

b (cm)

separation -> 0 ( = 0.002 cm)

2 (drift wave)

1 (long wavelength)

total
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There are obvious problems with using “large” sample volume
size and separations (b ≈ 2π/k, δy ≈ lc) in that for single
features:

large sample volume size gives
wrong power,
wrong phase or wave vector,
wrong  coherence or correlation length

large separation is not a problem

-------------------------------------------------------

In the presence of two features there are other problems.

The power is underestimated unless b ≈ 1/kmax is used.
Even if b and δy are chosen small, (b ≈ 1/kmax, δy << lc) only an
“average” k and correlation length will be measured.

We can use the sensitivities to sample volume size b and
separation δy to our advantage: we can filter out the effects of a
high wave vector (short wavelength), low correlation length
mode by choosing

1
kmin

>> b >>
1

kmax

lmax >> δy >> lmin
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LINE INTEGRALS,COMMON MODE, PATH EFFECTS

Problem: to evaluate a line integral of a fluctuating parameter.

analyzer

accelerator

secondary beam

Z

R, Y

primary beam

X

sample volume

φ

rj

Rj

path lij

path l2j

r = 0

I j = 2 Iinj exp − neσ1dl1
0

r j

∫
 

 
 

 

 
 neσ12δl exp − neσ2dl2 j

r j

Rj

∫
 

 
  

 

 
  

˜ I jω
I0 j

=
˜ n eω rj( )
ne0 r j( ) − ˜ n eωσ1dl1 + ˜ n eωσ2dl2 j

r j

Rj

∫
0

r j

∫
 

 
  

 

 
  
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“BLOBS”

Consider the mean square of some dimensionless parameter Y
which varies with density n so that

˜ Y = σ ˜ n dx
0

L

∫

The line integral is along the path 0 to L in the x direction.  The
square is given by (using dummy variables x1 and x2)

˜ Y 2 = σ 2 ˜ n 1 x1( ) ˜ n 2 x2( )dx1dx2
0

L

∫
0

L

∫

where ˜ n 1 x1( ) means the density fluctuation at point x1.  Assume

spatial and temporal averages are equivalent (the “ergodic”
assumption), i.e. for any parameter a the average is given by

a = limT→∞
1

2T
adt =

−T

T

∫ lim X→∞
1

2X
adx

−X

X

∫
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The mean square value of Y is

˜ Y 2 = σ 2 ˜ n 1 x1( ) ˜ n 2 x2( )dx1dx2
0

L

∫
0

L

∫

= σ 2 ˜ n 1 x1( ) ˜ n 2 x2( ) dx1dx2
0

L

∫
0

L

∫

= σ 2 N12dx1dx2
0

L

∫
0

L

∫

= σ 2 ˜ n 2 N x2 − x1( )dx1dx2
0

L

∫
0

L

∫

where the correlation function is

N12 = ˜ n 1 x1,t( ) ˜ n 2 x2 ,t( )
= ˜ n 1 x1,t( ) ˜ n 2 x1 + ∆, t( )
= N12 x2 − x1( )

and

N(x2 , x1) = N(x2 − x1) =
N12

˜ n 2
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For a spatially homogeneous process the correlation function
depends only on the coordinate difference (x2 - x1), not on the
actual coordinate itself, so that N(x2,x1) = N(x2 - x1) = N(X),
where we have introduced the relative coordinate X = x2 - x1.

Now choose a functional form for N(X) such as

N X( ) = e
− X

lc

 
 
  

 
 

2

where lc is a correlation length in the coordinate along the
path, i.e. in the x direction.  If lc << L then we can replace the
integral from -L to L by an integral from -• to • when integrating
N(X),

˜ Y 2 = σ 2 ˜ n 2 N X( )dXdX
−∞

∞
∫

0

L

∫

= 2σ 2 ˜ n 2 N X( )dXdX
0

∞
∫

0

L

∫

= 2σ 2 ˜ n 2 L N X( )dX
0

∞

∫

For the chosen form for N(X) we finally obtain

˜ Y 2 = σ 2 ˜ n 2 Llc π
Or for the rms value

˜ Y rms = ˜ Y 2 = π
1
4σ ˜ n rms Llc
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We can look on this as a “random walk” process, in which the
number of “steps” or “collisions” is L/lc i.e. the number of
correlation distances along the integral.  For such a process we
know the final displacement is the displacement associated
with one “step” (= σ ˜ n lc) times the square root of the number of
steps (= √(L/lc)).  You know this because for a random walk
the total rms distance ∆ moved in a time T is

∆ = 2TD

The diffusion coefficient D is itself given by the basic
“collision” process time τ and displacement d as

D =
d2

2τ

leading to the result I have quoted

∆ = d
T

τ
= d number of collisions

This simple model then gives the mean square
“displacement” as

˜ Y rms = σ ˜ n rms lcL

which is pretty close (≈ 33% error) to the correct answer.
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Applied to our HIBP case, for each Fourier component,

˜ I jω
I0 j

=
˜ n eω rj( )
ne0 r j( ) − ˜ n eωσ1dl1 + ˜ n eωσ2dl2 j

r j

Rj

∫
0

r j

∫
 

 
  

 

 
  

i.e. Neglecting cross terms between local and line integral
effects, and profiles

˜ I jω
I0 j

 

 
  

 

 
  

2

=
˜ n eω r j( )
ne0 r j( )

 

 
 
 

 

 
 
 

2

+ ˜ Y 2

= ˜ n eω

ne0

 

 
 

 

 
 

2

+ πσ 2 ˜ n eω
2 Llc

= ˜ n eω

ne0

 

 
 

 

 
 

2

1+ πσ 2ne0
2 Llc[ ]

i.e. the measured rms quantity is

˜ I jω
I0 j

 

 
  

 

 
  

rms

= ˜ n eω

ne0

 

 
 

 

 
 

rms

1+ g

g = πσ 2ne0
2 Llc
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APPLICATION OF GAUSSIAN STATISTICS TO LINE
INTEGRAL EFFECTS

Substitute Gaussian into expression for cross power.  Write
result in general form.  Then

˜ n e,rms,m = ˜ n e,rms 1+ g

γ m =
γ 2 + g2 + 2gγ cos φ ( )[ ]

1
2

1+ g

φ m = tan−1 γ sin φ ( )
γ cos φ ( )+ g

 

 
  

 

 
  

For a simple case (equal input and output beams, flat profiles)

g = −2 π neσL( ) lc
L

e
−

k ylc
2

 
 
  

 
 

2

+2 π neσL( )2 lc

L
e

−
k ylc
2

 
 
  

 
 

2

Typically g = 0.2.
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